Correction to: Weak Product Spaces of Dirichlet Series

نویسندگان

چکیده

We correct the proof of Theorem~8 in [\emph{Weak product spaces Dirichlet series}, Integral Equations Operator Theory \textbf{86} (2016), no.~4, 453--473.]

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert Spaces of Dirichlet Series

We consider various Hilbert spaces of Dirichlet series whose norms are given by weighted l2 norms of the Dirichlet coefficients. We characterize the multiplier algebras for some of these spaces. 0 Introduction Let w = {wn}n=n0 be a sequence of positive numbers. In this paper we are concerned with Hilbert spaces of functions representable by Dirichlet series: H w = {

متن کامل

Spaces of Dirichlet series with the complete Pick property

We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form k(s, u) = ∑ ann −s−ū, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert spaces to be “the same”, and introduce a notion of weak isomorphism. Many of the spaces we consider turn out to be weakly isomorphic as reproducing kernel Hil...

متن کامل

Generalized Ritt type and generalized Ritt weak type connected growth properties of entire functions represented by vector valued Dirichlet series

In this paper, we introduce the idea of generalized Ritt type and generalised Ritt weak type of entire functions represented by a vector valued Dirichlet series. Hence, we study some growth properties of two entire functions represented by a vector valued Dirichlet series on the basis of generalized Ritt type and generalised Ritt weak type.

متن کامل

On Entire Functions Defined by a Dirichlet Series: Correction

1. As pointed out by Sunyer i Balaguer in the preceding paper the proofs of Theorem 1 and of the second part of Theorem 2 of our paper [l ] are faulty. We observe that if we impose the additional hypothesis that Afs(D), is a nonincreasing function for sufficiently small a then the proofs can be made to work. After correction Theorem 1 and the second part of Theore...

متن کامل

Matrices related to Dirichlet series

We attach a certain n × n matrix An to the Dirichlet series L(s) = ∑ ∞ k=1 akk . We study the determinant, characteristic polynomial, eigenvalues, and eigenvectors of these matrices. The determinant of An can be understood as a weighted sum of the first n coefficients of the Dirichlet series L(s). We give an interpretation of the partial sum of a Dirichlet series as a product of eigenvalues. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integral Equations and Operator Theory

سال: 2023

ISSN: ['0378-620X', '1420-8989']

DOI: https://doi.org/10.1007/s00020-023-02736-5